Single pendulum is a device that can produce reciprocating swing. One end of a thin rod or a thin soft rope that cannot be stretched hangs at a certain point in the gravity field, and the other end solidifies a heavy ball to form a single pendulum. If the ball is limited to the swing in the lead straight plane, it is a plane single pendulum. If the ball swing is not limited to the lead straight plane, it is a spherical single pendulum.
Single pendulum motion refers to the movement of a mass point along a swing trajectory (i.e. a straight line) in a gravitational field. The point is suspended by a line that is absolutely flexible, the length is constant and the mass is negligible, and it moves periodically in the plumb plane under the action of gravity.
Hang a point of mass with an absolutely flexible, constant length and negligible mass, and make a periodic movement in the plumb plane under the action of gravity, which becomes a single pendulum.When a single pendulum vibrates under the condition that the pendulum angle is less than 5° (now generally considered to be less than 10°), it can be approximately regarded as a simple harmonic 1 movement.
The single pendulum experiment was originally done by Galileo, that is, when the swing angle of the swing ball is very small (less than 5°), the pendulum will do periodic swings. The swing period is directly proportional to the pendulum length. The longer the pendulum is, the longer the pendulum period is.
1. The force analysis of the single pendulum movement is as shown in the figure, a point is hung with an absolutely flexible line of constant length and negligible mass, and under the action of gravity in the plumb plane Periodic movement becomes a single pendulum. 2. In a single pendulum (or simple harmonic vibration), the pendulum is subjected to two main external forces: gravity and tension. 3. At this time, the single pendulum ball (object) is affected by two forces, namely its own weight and the pulling force of the rope. And on the same straight line, the combined force of the two provides the centripetal force of circular motion. The method of judging whether the force of an object is balanced: look at whether the state of motion of the object changes, because force is the reason for changing the state of motion of the object. 1, [Analysis] 1) The first release is the long pendulum, so there is nT1=nT2+Δt, and the solution is n=25, so the release time of the short pendulum is t=n T2=085s. At this time, the two At the same time, the swing passes the balance position to the left. 2) Increase the pendulum length without changing the pendulum length difference. The smaller the △T, the smaller the time difference that can be measured. 2. Answer: The amplitude and mechanical energy of the single pendulum change. The periodic formula T=2π(L/g)^1/2 of the single pendulum increases the mass of the pendulum ball, and the single pendulum period remains unchanged. 3. The high school physics single pendulum period formula is derived to establish the Lagrange equation, linear approximation solution, period formula, etc.Establish the Lagrange equation. Considering the motion of a single pendulum, we can establish its Lagrange equation. The Lagrange equation describes the motion of the system, which is expressed by the difference between the kinetic energy T and the potential energy U. 4. The first case is two identical single pendulums. Therefore, the inherent cycle is the same. One drives the other, and the two single swings are the same. There is no external force applied by the outside world, and the kinetic energy of the two balls is the same. Ideally, it will always swing consistently. High school physics single pendulum problem
Real-time supply-demand matching-APP, download it now, new users will receive a novice gift pack.
Single pendulum is a device that can produce reciprocating swing. One end of a thin rod or a thin soft rope that cannot be stretched hangs at a certain point in the gravity field, and the other end solidifies a heavy ball to form a single pendulum. If the ball is limited to the swing in the lead straight plane, it is a plane single pendulum. If the ball swing is not limited to the lead straight plane, it is a spherical single pendulum.
Single pendulum motion refers to the movement of a mass point along a swing trajectory (i.e. a straight line) in a gravitational field. The point is suspended by a line that is absolutely flexible, the length is constant and the mass is negligible, and it moves periodically in the plumb plane under the action of gravity.
Hang a point of mass with an absolutely flexible, constant length and negligible mass, and make a periodic movement in the plumb plane under the action of gravity, which becomes a single pendulum.When a single pendulum vibrates under the condition that the pendulum angle is less than 5° (now generally considered to be less than 10°), it can be approximately regarded as a simple harmonic 1 movement.
The single pendulum experiment was originally done by Galileo, that is, when the swing angle of the swing ball is very small (less than 5°), the pendulum will do periodic swings. The swing period is directly proportional to the pendulum length. The longer the pendulum is, the longer the pendulum period is.
1. The force analysis of the single pendulum movement is as shown in the figure, a point is hung with an absolutely flexible line of constant length and negligible mass, and under the action of gravity in the plumb plane Periodic movement becomes a single pendulum. 2. In a single pendulum (or simple harmonic vibration), the pendulum is subjected to two main external forces: gravity and tension. 3. At this time, the single pendulum ball (object) is affected by two forces, namely its own weight and the pulling force of the rope. And on the same straight line, the combined force of the two provides the centripetal force of circular motion. The method of judging whether the force of an object is balanced: look at whether the state of motion of the object changes, because force is the reason for changing the state of motion of the object. 1, [Analysis] 1) The first release is the long pendulum, so there is nT1=nT2+Δt, and the solution is n=25, so the release time of the short pendulum is t=n T2=085s. At this time, the two At the same time, the swing passes the balance position to the left. 2) Increase the pendulum length without changing the pendulum length difference. The smaller the △T, the smaller the time difference that can be measured. 2. Answer: The amplitude and mechanical energy of the single pendulum change. The periodic formula T=2π(L/g)^1/2 of the single pendulum increases the mass of the pendulum ball, and the single pendulum period remains unchanged. 3. The high school physics single pendulum period formula is derived to establish the Lagrange equation, linear approximation solution, period formula, etc.Establish the Lagrange equation. Considering the motion of a single pendulum, we can establish its Lagrange equation. The Lagrange equation describes the motion of the system, which is expressed by the difference between the kinetic energy T and the potential energy U. 4. The first case is two identical single pendulums. Therefore, the inherent cycle is the same. One drives the other, and the two single swings are the same. There is no external force applied by the outside world, and the kinetic energy of the two balls is the same. Ideally, it will always swing consistently. High school physics single pendulum problem
Energy sector HS code compliance
author: 2024-12-25 01:01HS code-based customs valuation tools
author: 2024-12-25 00:51How to identify correct HS codes
author: 2024-12-24 23:59HS code-based invoice matching
author: 2024-12-24 23:50HS code-based freight consolidation
author: 2024-12-24 23:36GCC HS code-based tariff systems
author: 2024-12-25 01:14Forestry products HS code insights
author: 2024-12-25 00:52Expert tips on customs data usage
author: 2024-12-24 23:14Chemical HS code alerts in EU markets
author: 2024-12-24 23:09Latin American HS code alignment
author: 2024-12-24 22:53729.34MB
Check894.23MB
Check775.54MB
Check948.22MB
Check463.51MB
Check279.21MB
Check572.58MB
Check568.34MB
Check344.58MB
Check383.64MB
Check392.19MB
Check146.28MB
Check776.13MB
Check182.66MB
Check289.27MB
Check717.84MB
Check934.66MB
Check458.36MB
Check883.61MB
Check232.39MB
Check647.12MB
Check381.42MB
Check113.79MB
Check517.91MB
Check497.95MB
Check961.82MB
Check352.76MB
Check548.12MB
Check357.99MB
Check933.22MB
Check733.47MB
Check281.77MB
Check145.22MB
Check281.48MB
Check518.82MB
Check483.22MB
CheckScan to install
Real-time supply-demand matching to discover more
Netizen comments More
997 APAC trade flows by HS code
2024-12-25 00:27 recommend
2209 Data-driven multimodal transport decisions
2024-12-25 00:16 recommend
2735 trade data analysis
2024-12-25 00:01 recommend
1527 HS code compliance for hazardous materials
2024-12-24 23:26 recommend
2012 HS code-based opportunity scanning
2024-12-24 22:57 recommend